Lampix Apps API
  • Introduction
  • Application Development
    • Getting Started
      • Up and Running
      • Boilerplate
    • Step by step app
      • What We'll Build
      • Environment Setup
      • Styling
      • HTML Structure
      • NeuralNetworkClassifier
      • MovementBasedSegmenter
      • Final Step
      • Extras
    • LampixJS
      • API Reference
        • Watcher
        • RegisteredWatcher
        • .watchers.add
        • .watchers.remove
        • .watchers.pauseAll
        • .watchers.resumeAll
        • .presets.button
        • .helpers.rectangle
        • getLampixInfo
        • switchToApp
        • exit
        • getApps
        • getAppConfig
        • getAppMetadata
        • writeJsonToFile
        • readJsonFromFile
        • transformRectCoords
        • constants
      • Examples
        • NeuralNetworkClassifier: Buttons
        • MovementBasedSegmenter
        • Counter App
      • Migrating from v0.x.x to v1.0.0-beta.x
      • Ecosystem
    • Deploying
      • Application Structure (production)
      • Local Deploy
    • Standard Watchers
    • Custom Watchers
      • Description
      • Environment Setup
      • Directory Structure
      • End result
      • QRCodeDetector implementation
    • Community
  • Lampix Simulator
    • Installation
    • Usage
      • Basics
Powered by GitBook
On this page

Was this helpful?

  1. Application Development
  2. LampixJS
  3. Examples

MovementBasedSegmenter

MovementBasedSegmenter uses a convolutional neural network to classify objects. MovementBasedSegmenter can detect (i.e locate and classify) multiple objects at a time in the specified watcher shape.

Example usage:

import lampix from '@lampix/core';

const watcher = {
  name: 'MovementBasedSegmenter',
  shape: {
    type: 'rectangle',
    data: {
      posX: 0,
      posY: 0,
      width: window.innerWidth,
      height: window.innerHeight
    }
  }
  params: {
    neural_network_name: 'fruits',
    filter_circle: { min_radius: 50, max_radius: 150, min_area_ratio: 0.7 },
    filter_area: { min_ratio: 3000, max_ratio: 70000 },
    filter_thresh: 55
  }
}

// Remember: .watchers.add always returns an array of registered watchers
// of the same length as the number of arguments passed to it
lampix.watchers.add(watcher)
  .then((listOfWatchers) => console.log(listOfWatchers[0]));
PreviousNeuralNetworkClassifier: ButtonsNextCounter App

Last updated 6 years ago

Was this helpful?

See for more information MBS.

standard watchers