Lampix Apps API
  • Introduction
  • Application Development
    • Getting Started
      • Up and Running
      • Boilerplate
    • Step by step app
      • What We'll Build
      • Environment Setup
      • Styling
      • HTML Structure
      • NeuralNetworkClassifier
      • MovementBasedSegmenter
      • Final Step
      • Extras
    • LampixJS
      • API Reference
        • Watcher
        • RegisteredWatcher
        • .watchers.add
        • .watchers.remove
        • .watchers.pauseAll
        • .watchers.resumeAll
        • .presets.button
        • .helpers.rectangle
        • getLampixInfo
        • switchToApp
        • exit
        • getApps
        • getAppConfig
        • getAppMetadata
        • writeJsonToFile
        • readJsonFromFile
        • transformRectCoords
        • constants
      • Examples
        • NeuralNetworkClassifier: Buttons
        • MovementBasedSegmenter
        • Counter App
      • Migrating from v0.x.x to v1.0.0-beta.x
      • Ecosystem
    • Deploying
      • Application Structure (production)
      • Local Deploy
    • Standard Watchers
    • Custom Watchers
      • Description
      • Environment Setup
      • Directory Structure
      • End result
      • QRCodeDetector implementation
    • Community
  • Lampix Simulator
    • Installation
    • Usage
      • Basics
Powered by GitBook
On this page
  • Returns
  • Example

Was this helpful?

  1. Application Development
  2. LampixJS
  3. API Reference

.helpers.rectangle

Create a shape object for a watcher descriptor.

Returns

{
  type: 'rectangle',
  data: {
    posX: number,
    posY: number,
    width: number,
    height: number
  }
}

Example

NOTE that all of the ways to create a button specified below are equivalent.

import lampix from '@lampix/core';

const callback = ([recognizedObject]) => {
  if (Number(recognizedObject.classTag) === 1) {
    console.log('yay!');
  } else {
    console.log('nay!');
  }
};

const watcher = {
  name: 'NeuralNetworkClassifier',
  shape: lampix.helpers.rectangle(50, 50, 50, 50),
  onClassification: callback,
  params: {
    neural_network_name: 'fingers'
  }
};
Previous.presets.buttonNextgetLampixInfo

Last updated 6 years ago

Was this helpful?